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Abstract

Accidents are a constant problem in numerous
enterprises and they greatly affect workers and project
results. This study aims to find out what caused these
crashes, focusing on how  worker-related,
environmental and managerial factors all interact with
each other. The goal is to find the main factors affecting
Workplace Hazard Prevention (WHP) and make a
model that can predict the future to lower risks. This
study uses an ensemble machine learning (EML)
approach to show Industrial Accident Analysis and
Predictive Models for Workplace Hazard Prevention
(IAA-PM-WHP). An analysis is conducted on a
publicly accessible collection of 65,518 workplace
injury reports from the Occupational Safety and Health
Administration (OSHA), using four distinct ML models.

This study suggested a way to build a model that takes
into account three important factors: "type of damage,"
"kind of event," and "harmed organ." The EML model
integrates  predictions from four fundamental
ML methodologies via soft voting. Among classic ML
models, the RF method had the greatest accuracy
(0.89), indicating robust overall prediction power. The
EML method outperformed all models, attaining the
greatest accuracy (0.92), precision (0.99), recall
(0.899), F1-score (0.94) and AUC (0.92).
Keywords: Workplace Hazard, Ensemble Machine
Learning, Accident, Industries, Prediction.

Introduction

Several industrial safety management systems have been
implemented and enhanced in recent decades, yet workplace
safety remains precarious and inadequate. Specifically,
several disciplines and tasks are executed concurrently and
cohesively in the construction sector, accompanied by many
hazardous elements. Consequently, safety management
within the construction sector is challenging due to the
intricate nature of many operations and the participation of
diverse stakeholders. Furthermore, most tasks are executed
by people; hence, methods for predicting workplace
incidents by straightforward correlations and subsequently
implementing safety measures to avert them, are
constrained. Consequently, comprehensive research has
been undertaken in recent decades to enhance the safety
performance of building sites'®. Many investigators have
performed analytical investigations across diverse domains
using historical accident information; nonetheless, some
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limitations have been identified in the study of industrial
accident information’. The personal and subjective views of
the individual compiling the occupational incidents report
are evident in the data; consequently, it is challenging to
analyze and represent the features of occupational incident
information in the construction sector, which is generated
without a systematic procedure and encompasses numerous
variables and standards.

The framework of industrial accident analysis comprises of
a combination of mixed elements, such as numerical and
category text depictions and missing information. The
multitude of variable types and the structure of various
categories complicate the interpretation of findings from
data components, allowing for very limited correlations
between characteristics®. The following inferences may be
derived from the current study findings. The WHP contains
several variables and values, complicating data processing,
characteristic reflection and correlation interpretation.

Nevertheless, if the variables are too diminished, their
attributes are forfeited, making the derivation of significant
conclusions impossible. Consequently, the categories and
value ranges for appropriate variables must be defined to use
data including additional accident data effectively.
Additionally, it is essential to build a procedure that
effectively captures patterns in industrial accidents, along
with a predictive system that learns from historical incidents
to mitigate the risk of future occurrences.

Review of Literature

It is common for accidents to happen at work in the building
industry, which is a high-risk field. A study that was just
released, looks into how ML and analysis forecasts can be
used to make the workplace safer. Cavalcanti et al® did a lot
of research on ML technologies in WHP and stressed the
need for more studies in this area. Goldberg? discussed how
building information modelling (BIM) could help make
building workers safer and suggested real-world uses such
as safety training and risk evaluation. Gao et al” used
machine learning and the five major psychological theories
to build a model that can predict how building workers will
behave regarding safety and find the workers who are most
likely to do something dangerous.

Fargnoli et al®, the authors improved their study by using ML
to predict the safety effects of driverless buildings. This
made a big difference in how well they could predict
injuries. These studies show that machine learning and
predictive models might be able to make workplaces safer.
Using a database from the Department of Labor and
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Employment of the Korean Republic, researchers made a
prediction model that used machine learning to determine
how likely fatal accidents will happen on building sites.

The study found that the RF method had the most accurate
predictions, with the month of the event and the number of
jobs being important factors. A different study project
looked at how to predict what would happen in crashes in
China by using eight different methods to look at 16
important factors. The study focused on "Kind of accident™
and "Accident reporting and management” as important
factors. Naive Bayes (NB) and Logistic Regression (LR) had
the best F1 scores on the raw database.

Mining, which has safety problems similar to building, has
used modeling to make predictions. We used machine
learning methods like DT and artificial neural networks
(ANN) to guess what would happen in workplace accidents
and how many people would miss work. Narrative
information gives us more information than organized
information®4. A different study?® suggested a way to predict
how well safety measures will work before building jobs
start. It used a DT method with the k-Nearest Neighbors (k-
NN) algorithm to find the most important factors for
predicting security results such as the number of safety staff,
their training, their commitment to following the rules and
management commitment.

A careful review of the literature on machine learning uses
in building security found trends and gaps in the field?. It
was found that figuring out how bad a building accident is,
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has been studied the most. Logistic regression (LR) was used
as a standard model. Scientists tested whether machine
learning techniques could predict how bad accidents would
be in different areas of agriculture and the models they
created were very accurate!’. This study showed how
important it is for safety scientists to think about
observational accident data in a mathematical way. ML has
shown promise in improving building safety, with several
studies showing how well different systems can predict what
will happen in accidents. As this study will explain, these
changes can greatly improve safety rules and lower the
number of accidents in the building industry.

Material and Methods
Data Collection: The database utilized for this investigation
was sourced from serious accident reports from the OSHA®.

Preparation of information: The categories of information
in this database are nature of damage, kind of incident,
harmed organ, type of industry, resource type, treatment
status and amputation occurrence. The Industry
Classification System (ICS) categorizes industries into 20
distinct sectors: farming, forestry, mineral extraction and
construction. The type of damage encompasses 10 categories
that delineate the physical aspects of the injury such as
superficial wounds, severe injuries and different ailments.
The afflicted bodily component comprises to eight groups.
Included are the trunk and both of the lower extremities. The
incident or exposure delineated how the harm was sustained.
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Fig. 1: Information distributions of the used parameters in workplace accidents from 2018 to 2023
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There are eight kinds of incidents including falls, slips, trips
and encounters with hazardous chemicals. Finally, nine
sources delineate what contributed to the injury including
tools, instruments and machines. Simultaneously, columns
about ID number, dates, employers' locations, town, state
and location were omitted. Columns such as examination
and additional information were eliminated since most items
were marked as of 'no value." Additionally, all records
containing empty columns were removed. The narrative
column is omitted since this research focuses only on
organized information.

This research uses just the highest labels: For instance, a
primary classification for this incident type involves contact
with items and equipment, subdividing into subcategories,
such as needle-stick and struck by materials or equipment.
To mitigate the limited coverage for each criterion®, only the
highest-ranking labels are considered for further
examination. The non-classifiable category about the
impacted body, incident type and source category is
reclassified as 'Other(s)." Sixty-five thousand five hundred
eighteen organized data points were used as inputs to
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forecast the seriousness of occupational injuries. Fig. 1
displays the information distributions of the used
parameters, illustrating the proportion of damaged organs in
workplace accidents from 2018 to 2023.

The architecture of the proposed IAA-PM-WHP using
the EML model

Pre-processing: Preliminary data processing is a crucial
phase in creating ML models. Missing values in the acquired
data might distort the performance predictions of the models.
This research eliminated 301 rows (0.5%) with missing
columns and used the standard scaling algorithm for data
normalization.

Database Splitting: The data collection is divided into two
subsets: (i) the learning dataset and (ii) the testing dataset.
This research used a 75:25 ratio, with 75% of the data
allocated to the training data set and 25% designated as the
testing dataset. The 75:25 ratio is often used in
ML classification experiments since it is thought to provide
high accuracy and mitigate overfitting. Figure 2 depicts the
architecture of the suggested technique.

Input parameters
'nature of damage,' 'kind of
incident,' and 'harmed
organ'

Database
splitting
[Tramlng data] [Testlng data]

A

o mm wm wm wm

Model analysis

Feature
optimization

Model
deployment

Fig. 2: Architecture of the proposed IAA-PM-WHP using EML model
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Predictive Modeling: For the research, four distinct
ML models have been used: SVM, DT, RF and XGB.

SVM: SVM may provide optimal transferable decision
limits for data categorization. This approach transforms the
initial feature space into a higher-dimensional space using a
kernel function specified by the function operator. It then
delineates the two categories using a hyperplane and adjusts
support vectors to maximize their separation. A hyperplane
is characterized as a demarcation that distinguishes the two
groups. The quantity of input factors dictates the dimensions
of the hyperplane in the database.

DT: The fundamental elements of a DT are: (i) the root
node, which serves as the starting point of the DT model; (ii)
the decision node, responsible for choice-making and
branching the model into numerous paths; and (iii) the leaf
node, representing the results of those choices. The
categorization in DT starts with dividing the root node into
the leaf node. The division persists until it attains the leaf
node. The classifier identifies the feature and its associated
threshold at every node to perform a split.

The database experiences a maximum reduction in entropy
or impurity after splitting it. A leaf containing samples
exclusively from a single class is considered optimal
throughout the splitting process. In DT, the classifier
analyzes the learning database to produce a tree-like decision
framework, beginning with a root node and concluding with
various leaves. Due to its superior understanding, DT is
often used in predictive analysis of workplace accidents.

RF: RFis an EML algorithm that employs tagging as its
ensemble technique and DT as its base approach, mitigating
volatility and bias to enhance results. The classifier
integrates multiple choice trees with a more resilient
classifier, enhancing adaptability and simplifying
hyperparameter tuning to mitigate overfitting concerns. In
categorization tasks inside Random Forest, each tree delivers
a classification or casts a 'vote.'

XGB: XGB is an efficient, adaptable and optimized
ML technique derived from the gradient boosting
framework. It is designed for velocity and efficacy including
parallel and dispersed computing, normalization strategies
and sophisticated tree-pruning algorithms to enhance
precision and mitigate overfitting. XGB operates by
incrementally constructing DT, with each subsequent tree
rectifying its predecessors' flaws by minimizing a loss
function. It accommodates categorization and regression
problems and is extensively used in data science contests and
practical applications including identifying scams,
suggestion systems and healthcare diagnosis, owing to its
exceptional prediction capability and adaptability.

EML: The EML method involves intentionally combining

fundamental models to create a robust model. The ensemble
method employs a synthesis of learning techniques to tackle
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a classification or regression problem that proves difficult
for each model to resolve autonomously. EL may exceed the
efficacy of an individual model. This research used soft-
voting ensemble learning. We first acquired fundamental
models like DT, RF, SVM and XGB by utilizing the training
dataset. After the training phase, the model's efficacy has
been assessed by examining its predictions against the test
data. The predictions from these models provide further
input to the EL, which operates as a cohesive model
designed to provide the final prediction.

Feature Optimization: This step aims to evaluate and
prioritize the most significant property of the workplace
injury prediction model. The performance of each ML model
was evaluated and the model yielding the optimal results was
used to identify the significant features influencing
workplace injury severity. The attribute with the highest
importance score is the most crucial indicator of the model.
The feature optimization phase included reconstructing the
optimal performance framework using the three most
significant characteristics as input parameters. The
framework then performs hyperparameter optimization with
the k-fold cross-validation method. K-fold cross-validation
is a method used to assess the efficacy of a suggested
predictive model. Fig. 3 depicts the steps involved in the
feature Optimization process.

This research used a k-value of 10 and conducted 200
iterations to optimize the suggested model. Using k = 10 is
prevalent in applied ML models since its practicality lowers
test error rates associated with elevated bias or variation. In
theory, the disparity in size between the learning set and the
re-sampling sections will diminish as Kk grows.
Simultaneously, the prejudice of the methodologies
diminishes as this disparity decreases. Subsequently, the
cross-validation accuracy metrics are calculated for all
hyperparameter configurations. The baseline model
using feature inputs will examine the mean cross-validation
accuracy rating. The design with the highest accuracy rating
is selected as the final model.

Results and Discussion

An analysis is conducted on a publicly accessible collection
of 65,518 workplace injury reports from OSHA, using four
distinct ML models: Support Vector Machine (SVM),
Extreme Gradient Boosting (XGB), Decision Tree (DT) and
Random Forest (RF) and proposed EML. Experiments have
been conducted on a high-performance system with eight
cores, 64 GB of RAM and a 100 GB drive. TensorFlow and
Keras frameworks have been used in the study.

Fig. 4 displays a performance comparison between existing
ML models and the proposed EML method for IAA-PM-
WHP. Among classic ML models, the RF method had the
greatest accuracy (0.89), indicating robust overall prediction
power. The EML method outperformed all models, attaining
the greatest accuracy (0.92), precision (0.99), recall (0.899),
F1-score (0.94) and AUC (0.92). This shows that the EML
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model is the best at identifying risks in the workplace and 0.984 respectively, showing they were good at finding
because it is the most stable and well-rounded. Also, the dangerous work situations with few false positives.
XGB and SVM models had high accuracy scores of 0.985
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Fig. 4: Performance analysis of traditional ML and proposed EML algorithms for IAA-PM-WHP
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The EML algorithm performed better than all previous
models, making it the best way to investigate workplace
accidents and lower the risk of workplace harm. The high
memory value of EML (0.899) shows that it is good at
finding the most real risk cases, which lowers the chance of
missing important workplace issues. The F1-score (0.94)
and AUC (0.92) also show that it is very good at predicting
the future and is reliable. Even though the RF and DT models
did well, they had slightly worse memory and the AUC
values show that EML has a better mix of accuracy and
recall. This study emphasizes the advantages of advanced
ML methods for improving workplace safety. It shows how
better ML can help to avoid accidents and to lower risks in
the workplace.

Fig. 5 illustrates the trends in loss and accuracy throughout
several iterations during the training of the EML model for
IAA-PM-WHP. At iteration 0, the model starts with a big
loss of 0.8 and a very low accuracy of 0.3, which shows that
it is just starting to learn. The accuracy improves with each
iteration, reaching 0.75 by iteration 30 and a peak of 0.98 by
iteration 160.

This shows that the model correctly learns patterns from the
training sample over time. At the same time, the loss keeps
going down until it reaches 0.58 at iteration 60, which means
that the model is getting better at making predictions. Still,
the loss does not always go down; it goes up and down in
small amounts, which could be because of differences in
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how the training works, the complexity of the data, or
changes in the learning rate.

As training goes on, the model gets much better at accuracy.
However, there are changes in loss and accuracy at certain
rounds, especially at 50, 100 and 180 where accuracy
temporarily drops. This could be because they were either
too fit or loose at different training points. Even with these
changes, the model becomes stable at many points especially
at rounds 90, 110 and 140, where accuracy consistently
scores at 0.8. The highest level of accuracy, 0.98, at iteration
160 shows that the model is well-tuned and can make good
predictions. The different loss numbers suggest that more
tuning of hyperparameters or regularization methods could
stabilize the model.

Conclusion

This work introduces Industrial Accident Analysis and
Predictive Models for Workplace Hazard Prevention (IAA-
PM-WHP) using an Ensemble Machine Learning (EML)
methodology. Our study uses four ML models—SVM, DT,
RF and XGB to look at a freely available dataset that has
65,518 reports of work-related accidents from the OSHA
database. This research showed a new way to improve model
development by focusing on three important factors: “type
of damage,"” "kind of occurrence," and "affected organ.” The
EML model combines predictions from four important
machine learning methods using "soft voting".
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Fig. 5: Loss and accuracy of training database used in the proposed EML for IAA-PM-WHP

https://doi.org/10.25303/186da058064

63



Disaster Advances

The random forest method had the best accuracy (0.89)
among standard machine learning models showing that it is
very good at making predictions in general. The EML
method did better than the others, with the best accuracy
(0.92), precision (0.99), recall (0.899), F1-score (0.94) and
AUC (0.92). In many places, the suggested EML model
becomes stable. This is especially true at iterations 90, 110
and 140 where accuracy always stays at 0.8. The highest
level of accuracy (0.98 at iteration 160) shows that the model
is well-tuned and is good at making predictions. The changes
in loss values show that the model could be more stable with
more improvements, like hyperparameter tuning or
regularization methods.
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