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Abstract 
Accidents are a constant problem in numerous 

enterprises and they greatly affect workers and project 

results. This study aims to find out what caused these 

crashes, focusing on how worker-related, 

environmental and managerial factors all interact with 

each other. The goal is to find the main factors affecting 

Workplace Hazard Prevention (WHP) and make a 

model that can predict the future to lower risks. This 

study uses an ensemble machine learning (EML) 

approach to show Industrial Accident Analysis and 

Predictive Models for Workplace Hazard Prevention 

(IAA-PM-WHP). An analysis is conducted on a 

publicly accessible collection of 65,518 workplace 

injury reports from the Occupational Safety and Health 

Administration (OSHA), using four distinct ML models.  

 

This study suggested a way to build a model that takes 

into account three important factors: "type of damage," 

"kind of event," and "harmed organ." The EML model 

integrates predictions from four fundamental 

ML methodologies via soft voting. Among classic ML 

models, the RF method had the greatest accuracy 

(0.89), indicating robust overall prediction power. The 

EML method outperformed all models, attaining the 

greatest accuracy (0.92), precision (0.99), recall 

(0.899), F1-score (0.94) and AUC (0.92). 
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Introduction 
Several industrial safety management systems have been 

implemented and enhanced in recent decades, yet workplace 

safety remains precarious and inadequate. Specifically, 

several disciplines and tasks are executed concurrently and 

cohesively in the construction sector, accompanied by many 

hazardous elements. Consequently, safety management 

within the construction sector is challenging due to the 

intricate nature of many operations and the participation of 

diverse stakeholders. Furthermore, most tasks are executed 

by people; hence, methods for predicting workplace 

incidents by straightforward correlations and subsequently 

implementing safety measures to avert them, are 

constrained. Consequently, comprehensive research has 

been undertaken in recent decades to enhance the safety 
performance of building sites10. Many investigators have 

performed analytical investigations across diverse domains 

using historical accident information; nonetheless, some 

limitations have been identified in the study of industrial 

accident information7. The personal and subjective views of 

the individual compiling the occupational incidents report 

are evident in the data; consequently, it is challenging to 

analyze and represent the features of occupational incident 

information in the construction sector, which is generated 

without a systematic procedure and encompasses numerous 

variables and standards.  

 

The framework of industrial accident analysis comprises of 

a combination of mixed elements, such as numerical and 

category text depictions and missing information. The 

multitude of variable types and the structure of various 

categories complicate the interpretation of findings from 

data components, allowing for very limited correlations 

between characteristics4. The following inferences may be 

derived from the current study findings. The WHP contains 

several variables and values, complicating data processing, 

characteristic reflection and correlation interpretation.  

 

Nevertheless, if the variables are too diminished, their 

attributes are forfeited, making the derivation of significant 

conclusions impossible. Consequently, the categories and 

value ranges for appropriate variables must be defined to use 

data including additional accident data effectively. 

Additionally, it is essential to build a procedure that 

effectively captures patterns in industrial accidents, along 

with a predictive system that learns from historical incidents 

to mitigate the risk of future occurrences.  

 

Review of Literature 
It is common for accidents to happen at work in the building 

industry, which is a high-risk field. A study that was just 

released, looks into how ML and analysis forecasts can be 

used to make the workplace safer. Cavalcanti et al3 did a lot 

of research on ML technologies in WHP and stressed the 

need for more studies in this area. Goldberg8 discussed how 

building information modelling (BIM) could help make 

building workers safer and suggested real-world uses such 

as safety training and risk evaluation. Gao et al7 used 

machine learning and the five major psychological theories 

to build a model that can predict how building workers will 

behave regarding safety and find the workers who are most 

likely to do something dangerous.  

 

Fargnoli et al6, the authors improved their study by using ML 

to predict the safety effects of driverless buildings. This 

made a big difference in how well they could predict 
injuries. These studies show that machine learning and 

predictive models might be able to make workplaces safer. 

Using a database from the Department of Labor and 
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Employment of the Korean Republic, researchers made a 

prediction model that used machine learning to determine 

how likely fatal accidents will happen on building sites.  

 

The study found that the RF method had the most accurate 

predictions, with the month of the event and the number of 

jobs being important factors. A different study project 

looked at how to predict what would happen in crashes in 

China by using eight different methods to look at 16 

important factors. The study focused on "Kind of accident" 

and "Accident reporting and management" as important 

factors. Naive Bayes (NB) and Logistic Regression (LR) had 

the best F1 scores on the raw database.  

 

Mining, which has safety problems similar to building, has 

used modeling to make predictions. We used machine 

learning methods like DT and artificial neural networks 

(ANN) to guess what would happen in workplace accidents 

and how many people would miss work. Narrative 

information gives us more information than organized 

information14. A different study13 suggested a way to predict 

how well safety measures will work before building jobs 

start. It used a DT method with the k-Nearest Neighbors (k-

NN) algorithm to find the most important factors for 

predicting security results such as the number of safety staff, 

their training, their commitment to following the rules and 

management commitment.  

 

A careful review of the literature on machine learning uses 

in building security found trends and gaps in the field2. It 

was found that figuring out how bad a building accident is, 

has been studied the most. Logistic regression (LR) was used 

as a standard model. Scientists tested whether machine 

learning techniques could predict how bad accidents would 

be in different areas of agriculture and the models they 

created were very accurate11. This study showed how 

important it is for safety scientists to think about 

observational accident data in a mathematical way. ML has 

shown promise in improving building safety, with several 

studies showing how well different systems can predict what 

will happen in accidents. As this study will explain, these 

changes can greatly improve safety rules and lower the 

number of accidents in the building industry.  

 

Material and Methods 
Data Collection: The database utilized for this investigation 

was sourced from serious accident reports from the OSHA1. 

 

Preparation of information: The categories of information 

in this database are nature of damage, kind of incident, 

harmed organ, type of industry, resource type, treatment 

status and amputation occurrence. The Industry 

Classification System (ICS) categorizes industries into 20 

distinct sectors: farming, forestry, mineral extraction and 

construction. The type of damage encompasses 10 categories 

that delineate the physical aspects of the injury such as 

superficial wounds, severe injuries and different ailments. 

The afflicted bodily component comprises to eight groups. 

Included are the trunk and both of the lower extremities. The 

incident or exposure delineated how the harm was sustained.  

 

 
Fig. 1: Information distributions of the used parameters in workplace accidents from 2018 to 2023 
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There are eight kinds of incidents including falls, slips, trips 

and encounters with hazardous chemicals. Finally, nine 

sources delineate what contributed to the injury including 

tools, instruments and machines. Simultaneously, columns 

about ID number, dates, employers' locations, town, state 

and location were omitted. Columns such as examination 

and additional information were eliminated since most items 

were marked as of 'no value.' Additionally, all records 

containing empty columns were removed. The narrative 

column is omitted since this research focuses only on 

organized information.  

 

This research uses just the highest labels: For instance, a 

primary classification for this incident type involves contact 

with items and equipment, subdividing into subcategories, 

such as needle-stick and struck by materials or equipment. 

To mitigate the limited coverage for each criterion9, only the 

highest-ranking labels are considered for further 

examination. The non-classifiable category about the 

impacted body, incident type and source category is 

reclassified as 'Other(s).' Sixty-five thousand five hundred 

eighteen organized data points were used as inputs to 

forecast the seriousness of occupational injuries. Fig. 1 

displays the information distributions of the used 

parameters, illustrating the proportion of damaged organs in 

workplace accidents from 2018 to 2023.  

 

The architecture of the proposed IAA-PM-WHP using 

the EML model 
Pre-processing: Preliminary data processing is a crucial 

phase in creating ML models. Missing values in the acquired 

data might distort the performance predictions of the models. 

This research eliminated 301 rows (0.5%) with missing 

columns and used the standard scaling algorithm for data 

normalization. 

 

Database Splitting: The data collection is divided into two 

subsets: (i) the learning dataset and (ii) the testing dataset. 

This research used a 75:25 ratio, with 75% of the data 

allocated to the training data set and 25% designated as the 

testing dataset. The 75:25 ratio is often used in 

ML classification experiments since it is thought to provide 

high accuracy and mitigate overfitting. Figure 2 depicts the 

architecture of the suggested technique. 

 

 
Fig. 2: Architecture of the proposed IAA-PM-WHP using EML model 
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Predictive Modeling: For the research, four distinct 

ML models have been used: SVM, DT, RF and XGB. 

 

SVM: SVM may provide optimal transferable decision 

limits for data categorization. This approach transforms the 

initial feature space into a higher-dimensional space using a 

kernel function specified by the function operator. It then 

delineates the two categories using a hyperplane and adjusts 

support vectors to maximize their separation. A hyperplane 

is characterized as a demarcation that distinguishes the two 

groups. The quantity of input factors dictates the dimensions 

of the hyperplane in the database.  

 

DT: The fundamental elements of a DT are: (i) the root 

node, which serves as the starting point of the DT model; (ii) 

the decision node, responsible for choice-making and 

branching the model into numerous paths; and (iii) the leaf 

node, representing the results of those choices. The 

categorization in DT starts with dividing the root node into 

the leaf node. The division persists until it attains the leaf 

node. The classifier identifies the feature and its associated 

threshold at every node to perform a split.  

 

The database experiences a maximum reduction in entropy 

or impurity after splitting it. A leaf containing samples 

exclusively from a single class is considered optimal 

throughout the splitting process. In DT, the classifier 

analyzes the learning database to produce a tree-like decision 

framework, beginning with a root node and concluding with 

various leaves. Due to its superior understanding, DT is 

often used in predictive analysis of workplace accidents.  

 

RF: RF is an EML algorithm that employs tagging as its 

ensemble technique and DT as its base approach, mitigating 

volatility and bias to enhance results. The classifier 

integrates multiple choice trees with a more resilient 

classifier, enhancing adaptability and simplifying 

hyperparameter tuning to mitigate overfitting concerns. In 

categorization tasks inside Random Forest, each tree delivers 

a classification or casts a 'vote.'  

 

XGB: XGB is an efficient, adaptable and optimized 

ML technique derived from the gradient boosting 

framework. It is designed for velocity and efficacy including 

parallel and dispersed computing, normalization strategies 

and sophisticated tree-pruning algorithms to enhance 

precision and mitigate overfitting. XGB operates by 

incrementally constructing DT, with each subsequent tree 

rectifying its predecessors' flaws by minimizing a loss 

function. It accommodates categorization and regression 

problems and is extensively used in data science contests and 

practical applications including identifying scams, 

suggestion systems and healthcare diagnosis, owing to its 

exceptional prediction capability and adaptability. 

 
EML: The EML method involves intentionally combining 

fundamental models to create a robust model. The ensemble 

method employs a synthesis of learning techniques to tackle 

a classification or regression problem that proves difficult 

for each model to resolve autonomously. EL may exceed the 

efficacy of an individual model. This research used soft-

voting ensemble learning. We first acquired fundamental 

models like DT, RF, SVM and XGB by utilizing the training 

dataset. After the training phase, the model's efficacy has 

been assessed by examining its predictions against the test 

data. The predictions from these models provide further 

input to the EL, which operates as a cohesive model 

designed to provide the final prediction.  

 

Feature Optimization: This step aims to evaluate and 

prioritize the most significant property of the workplace 

injury prediction model. The performance of each ML model 

was evaluated and the model yielding the optimal results was 

used to identify the significant features influencing 

workplace injury severity. The attribute with the highest 

importance score is the most crucial indicator of the model. 

The feature optimization phase included reconstructing the 

optimal performance framework using the three most 

significant characteristics as input parameters. The 

framework then performs hyperparameter optimization with 

the k-fold cross-validation method. K-fold cross-validation 

is a method used to assess the efficacy of a suggested 

predictive model. Fig. 3 depicts the steps involved in the 

feature Optimization process. 

 

This research used a k-value of 10 and conducted 200 

iterations to optimize the suggested model. Using k = 10 is 

prevalent in applied ML models since its practicality lowers 

test error rates associated with elevated bias or variation. In 

theory, the disparity in size between the learning set and the 

re-sampling sections will diminish as k grows. 

Simultaneously, the prejudice of the methodologies 

diminishes as this disparity decreases. Subsequently, the 

cross-validation accuracy metrics are calculated for all 

hyperparameter configurations. The baseline model 

using feature inputs will examine the mean cross-validation 

accuracy rating. The design with the highest accuracy rating 

is selected as the final model.  

 

Results and Discussion 
An analysis is conducted on a publicly accessible collection 

of 65,518 workplace injury reports from OSHA, using four 

distinct ML models: Support Vector Machine (SVM), 

Extreme Gradient Boosting (XGB), Decision Tree (DT) and 

Random Forest (RF) and proposed EML. Experiments have 

been conducted on a high-performance system with eight 

cores, 64 GB of RAM and a 100 GB drive. TensorFlow and 

Keras frameworks have been used in the study. 

 

Fig. 4 displays a performance comparison between existing 

ML models and the proposed EML method for IAA-PM-

WHP. Among classic ML models, the RF method had the 

greatest accuracy (0.89), indicating robust overall prediction 

power. The EML method outperformed all models, attaining 

the greatest accuracy (0.92), precision (0.99), recall (0.899), 

F1-score (0.94) and AUC (0.92). This shows that the EML 
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model is the best at identifying risks in the workplace 

because it is the most stable and well-rounded. Also, the 

XGB and SVM models had high accuracy scores of 0.985 

and 0.984 respectively, showing they were good at finding 

dangerous work situations with few false positives.

 

 
Fig. 3: Steps involved in Feature Optimization 

 

 
Fig. 4: Performance analysis of traditional ML and proposed EML algorithms for IAA-PM-WHP 
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The EML algorithm performed better than all previous 

models, making it the best way to investigate workplace 

accidents and lower the risk of workplace harm. The high 

memory value of EML (0.899) shows that it is good at 

finding the most real risk cases, which lowers the chance of 

missing important workplace issues. The F1-score (0.94) 

and AUC (0.92) also show that it is very good at predicting 

the future and is reliable. Even though the RF and DT models 

did well, they had slightly worse memory and the AUC 

values show that EML has a better mix of accuracy and 

recall. This study emphasizes the advantages of advanced 

ML methods for improving workplace safety. It shows how 

better ML can help to avoid accidents and to lower risks in 

the workplace.  

 

Fig. 5 illustrates the trends in loss and accuracy throughout 

several iterations during the training of the EML model for 

IAA-PM-WHP. At iteration 0, the model starts with a big 

loss of 0.8 and a very low accuracy of 0.3, which shows that 

it is just starting to learn. The accuracy improves with each 

iteration, reaching 0.75 by iteration 30 and a peak of 0.98 by 

iteration 160.  

 

This shows that the model correctly learns patterns from the 

training sample over time. At the same time, the loss keeps 

going down until it reaches 0.58 at iteration 60, which means 

that the model is getting better at making predictions. Still, 

the loss does not always go down; it goes up and down in 

small amounts, which could be because of differences in 

how the training works, the complexity of the data, or 

changes in the learning rate.  

 

As training goes on, the model gets much better at accuracy. 

However, there are changes in loss and accuracy at certain 

rounds, especially at 50, 100 and 180 where accuracy 

temporarily drops. This could be because they were either 

too fit or loose at different training points. Even with these 

changes, the model becomes stable at many points especially 

at rounds 90, 110 and 140, where accuracy consistently 

scores at 0.8. The highest level of accuracy, 0.98, at iteration 

160 shows that the model is well-tuned and can make good 

predictions. The different loss numbers suggest that more 

tuning of hyperparameters or regularization methods could 

stabilize the model. 

 

Conclusion 
This work introduces Industrial Accident Analysis and 

Predictive Models for Workplace Hazard Prevention (IAA-

PM-WHP) using an Ensemble Machine Learning (EML) 

methodology. Our study uses four ML models—SVM, DT, 

RF and XGB to look at a freely available dataset that has 

65,518 reports of work-related accidents from the OSHA 

database. This research showed a new way to improve model 

development by focusing on three important factors: "type 

of damage," "kind of occurrence," and "affected organ." The 

EML model combines predictions from four important 

machine learning methods using "soft voting".

 

 
Fig. 5: Loss and accuracy of training database used in the proposed EML for IAA-PM-WHP 
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The random forest method had the best accuracy (0.89) 

among standard machine learning models showing that it is 

very good at making predictions in general. The EML 

method did better than the others, with the best accuracy 

(0.92), precision (0.99), recall (0.899), F1-score (0.94) and 

AUC (0.92). In many places, the suggested EML model 

becomes stable. This is especially true at iterations 90, 110 

and 140 where accuracy always stays at 0.8. The highest 

level of accuracy (0.98 at iteration 160) shows that the model 

is well-tuned and is good at making predictions. The changes 

in loss values show that the model could be more stable with 

more improvements, like hyperparameter tuning or 

regularization methods.  
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